Controls on long-term root and leaf litter decomposition in neotropical forests

ثبت نشده
چکیده

Litter decomposition represents one of the largest annual fluxes of carbon (C) from terrestrial ecosystems, particularly for tropical forests, which are generally characterized by high net primary productivity and litter turnover. We used data from the Long-Term Intersite Decomposition Experiment (LIDET) to (1) determine the relative importance of climate and litter quality as predictors of decomposition rates, (2) compare patterns in root and leaf litter decomposition, (3) identify controls on net nitrogen (N) release during decay, and (4) compare LIDET rates with native species studies across five bioclimatically diverse neotropical forests. Leaf and root litter decomposed fastest in the lower montane rain and moist forests and slowest in the seasonally dry forest. The single best predictor of leaf litter decomposition was the climate decomposition index (CDI), explaining 51% of the variability across all sites. The strongest models for predicting leaf decomposition combined climate and litter chemistry, and included CDI and lignin (R5 0.69), or CDI, N and nonpolar extractives (R5 0.69). While we found no significant differences in decomposition rates between leaf and root litter, drivers of decomposition differed for the two tissue types. Initial stages of decomposition, determined as the time to 50% mass remaining, were driven primarily by precipitation for leaf litter (R5 0.93) and by temperature for root litter (R5 0.86). The rate of N release from leaf litter was positively correlated with initial N concentrations; net N immobilization increased with decreasing initial N concentrations. This study demonstrates that decomposition is sensitive to climate within and across tropical forests. Our results suggest that climate change and increasing N deposition in tropical forests are likely to result in significant changes to decomposition rates in this biome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine roots are the dominant source of recalcitrant plant litter in sugar maple‐dominated northern hardwood forests

Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined ...

متن کامل

Plant herbivory responses through changes in leaf quality have no effect on subsequent leaf-litter decomposition in a neotropical rain forest tree community.

It is commonly accepted that plant responses to foliar herbivory (e.g. plant defenses) can influence subsequent leaf-litter decomposability in soil. While several studies have assessed the herbivory-decomposability relationship among different plant species, experimental tests at the intra-specific level are rare, although critical for a mechanistic understanding of how herbivores affect decomp...

متن کامل

Do ectomycorrhizas alter leaf-litter decomposition in monodominant tropical forests of Guyana?

This work tested the hypothesis that ectomycorrhizas (EM) of Dicymbe corymbosa alter leaf-litter decomposition and residual litter quality in tropical forests of Guyana. Mass loss of leaf litter in litter bags was determined on three occasions, in two experiments, during a 12-month period. Paired root-exclusion plots were located randomly within a D. corymbosa forest. Both D. corymbosa and mixe...

متن کامل

Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such ch...

متن کامل

Effect of Livestock Grazing on Growth Characteristics of Atriplex Canescens

It has often been stated or implied that grazing is an important factor in the land degradation process, a suggestion supported by various research projects, and this study investigated the effect of livestock grazing on stem height, crowncover, production, basal diameter, stem biomass, litter, leaf-stem index (leaf to stem weight) , root diameter and weight and seed production per individual o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009